

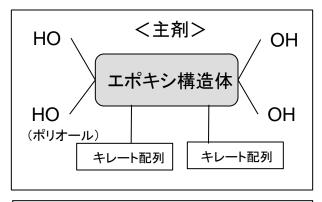
強力防備プライマーCCP

ご紹介資料Vol.2

株式会社エコロテック

商品のお問合せ・施工のお問合先

203-3498-5333



◆錆に強い構造体~プライマーCCP

強力防錆プライマーCCP構造模型

<硬化剤> OCN -NCO (イソシネート)

【CCP構造模型の働き】

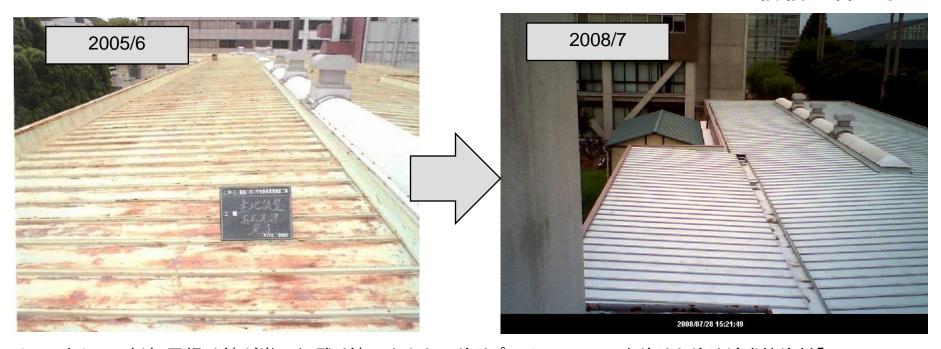
エポキシ構造体外部からの水(水蒸気)を阻止する。 この構造体は水の透過度0、水蒸気の透過度2mg/m².24時間を示す。

キレート配位子

錆の進行中の不安定な錆を捕えて安定なキレート化鉄を極力除く 作用をする。

硬化剤のイソシアネート

末端ポリオールと反応し塗膜を形成すると同時に錆中の結晶水と反応して除去する作用を有している。また錆中に浸透して錆の補強を行う。


CCPは以上の働きと同時に、塗膜全体としては柔軟であり、各種塗料との密着度も高い特徴を持つ。

◆プライマーCCPの特徴

- 1) 錆の中の不安定な物質を除去又は安定化させる.
- 2) 安定化錆中の結晶水を除去.
- 3)外部より透過する酸素、水蒸気の透過率の低い塗膜層を形成する.
- 4) 構造物の歪みに追随し、下地と良好な接着力を保持する.
- 5)上塗り塗料と良く接着する.
- 6) 乾燥が早く、乾燥中に湿潤空気の影響が小さい.

≪前橋工科大学≫

(2005年)元の折板屋根は錆が激しく、残り錆の上から下塗りプライマーCCP、中塗り上塗りが消熱塗料「NeO COAT」。 ケレンは2種ケレン。(2008年)右は施工後3年経過しているが、錆は全く見られない。

◆3種ケレンでも強い防錆効果

ケレンとは・・・カワスキやサンドペーパーなどで凹凸を削ったりサビを落とす事。旧塗膜が剥がれている場合にはそれを落とす場合にもケレンと言う。

第1種ケレン:旧塗膜やサビを徹底的に落としてピカピカした状態にする。

第2種ケレン: 地金が出るくらいまで旧塗膜やサビを落とすが活膜はそのまま。

第3種ケレン: 活膜が多い場合で部分的に錆びが発生している状態の時に劣化部分のみ除去する

第4種ケレン: 汚れや粉化物を除去する

1. 下地処理 :高圧洗浄、ワイヤーブラシ等、手工具で 錆こぶを除去。

錆コブ以外の残り錆はOK

2. 下塗り : CCPを塗布。

3. 中塗/上塗 : 一般塗料、消熱塗料を塗布

4. 問題点 : CCPがやや割高

1. 下地処理:ショットブラストなどを用いて、錆を完全に除去。

2. 下塗り: 防錆効果のあるプライマーを塗布。

3. 中塗/下塗: 耐候性、耐環境性塗料を塗布。

4. 問題点 ケレンが不十分だと錆が止まらない。 十分なケレン は高価で、難しい。

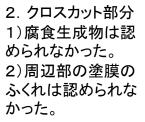
靖

ケレンが不十分な場合でも、強い錆止め効果を発揮します。 この錆びの上から、CCPを塗布すれば、強い錆止め効果が生まれます。

CCP塗布 プライマーCCPに塗料を塗布

◆強度腐食促進テスト(キャス試験)

錆び鋼板 CASS∶264時間

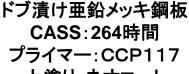

プライマー: CCP117(透明)

上塗り なし



所 見

1. 平面部分 塗膜表面に腐食生 成物は認められなかった。


磨き鋼板 CASS:264時間 プライマー:CCP117

所 見

1. 平面部分 塗膜表面に腐食生 成物は認められな かった。

2. クロスカット部分 1) 腐食生成物は 認められなかった。 2) 周辺部の塗膜 のふくれは認められなかった。

所 見

1. 平面部分 塗膜表面に腐食生 成物は認められなかった。

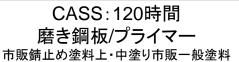
2. クロスカット部分 1) 腐食生成物は認められなかった。 2) 周辺部の塗膜のふくれは認められなかった。

◆強度腐食促進テスト(キャス試験)

CASS:264時間 **SUS444**

所見 赤褐色腐食生成物が認め られる。

CASS:264時間 ガルバー銅板



所見 全面に赤褐色腐食生成物が発生 クロスカット部のメッキ層はほぼ剥落

CASS:264時間 磨き銅板 溶融亜鉛メッキ(350g/m²)

所見 全面に白色腐食生成物(亜鉛)が溶出。 赤褐色腐食生成物が発生。

◆亜鉛メッキ比較

CASS試験(きゃすしけん)

定義:

5%塩化ナトリウムに酢酸と塩化第二銅を添加した溶液を 50℃に保って噴射させ試験装置内へ試験片を静置して、さびの発生状態を調べる試験。

塩水噴霧試験の腐食条件を過酷にした試験方法で、主としてメッキの耐候性加速試験として用いられるが、ステンレス鋼などにも用いられる。

CASS:264時間 磨き銅板 溶融亜鉛メッキ(350g/㎡)

所見 全面に白色腐食生成物(亜鉛)が溶出。 赤褐色腐食生成物が発生。 全体的にふくれが生じてたれてきている 状況。

錆び鋼板 CASS:264時間 プライマー:CCP117(透明) 上塗り なし

所 見

1. 平面部分 塗膜表面に腐食生成物は認められなかった。

- 2. クロスカット部分
- 1)腐食生成物が見られた (当初より錆び鋼板に塗布している ため)
- 2) 周辺部の塗膜のふくれは認められなかった。
- 3)クロスカット周囲の塗膜剥離なし
- * CCP117は錆面に塗布したにも 関わらず、全体的なふくれや 垂れは生じておらず、亜鉛メッキ より優れた結果が出ている。

高性能ステンレスに匹敵する結果

◆プライマーCCP利用用途

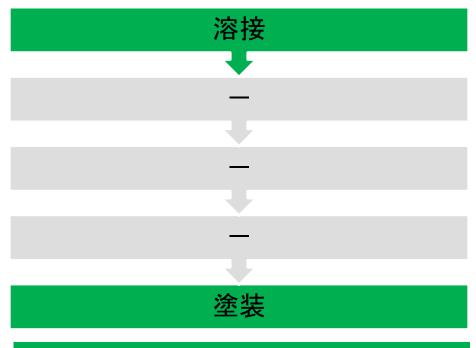
1、新築・鉄板屋根、壁

鉄板・鉄骨は経済的な建設資材です。CCPで錆をストップし、普通鋼板で 長寿命の建築構造体が可能となります。

2、鉄板屋根・壁の塗替え

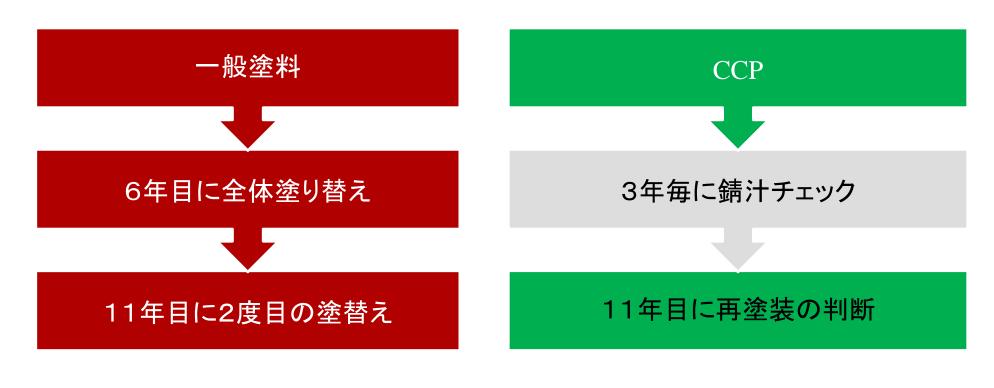
ケレンが不十分でも、強い錆止め効果があり、再塗装の期間が長くとれます。 消熱塗料「NeO COAT」と組み合わせれば、省エネ効果や作業環境の改善が実現します。 特に冬場結露しやすい建物の腐食対策には最適です。

3、腐食環境の厳しい施設、設備


臨海部や腐食性薬品の強い環境下でも、鉄部を保護し、寿命を延ばします。 サイロ、ホッパー、タンク、排水処理槽、ベルトコンベアー、階段など腐食でお困りの箇所 も安心です。特に海水接液部では効果的です。

◆CCP工程によるメリット(メッキ工程削減とcoL@TEC

メッキエ程


CCP工程

CCP工程では、酸洗・メッキ・矯正の各工程が省かれるため、省エネ・省コスト・環境貢献が実現できます

◆CCPによる鉄鋼構造物維持管理の合理化oL®TEC

通常は、原材料費、動力エネルギー費が高騰。工期短縮も困難。環境負荷も大きい。

CCPの防錆効果で全体塗り替えの必要性なし。ただし、美観上の塗り替えは別途検討が必要です。

◆プライマーCCP採用実績

トヨタ・レクサスIS 部品

トヨタ・レクサス・セルシオの部品に、初代から継続してご採用いただいています

テレビ中継局

南種子島

◆プライマーCCP採用実績一覧(抜粋)

						-		
工期	工事名	使用箇所	所在地	工期	工事名	使用箇所	所在	E地
H11.11月	東京電力 鹿島火力発電所	施設	茨 城	H14. 1月	NHK	放送鉄塔	神秀	₹JII
H11.12月	トクヤマ	電解設備	μп	H14. 7月	江東区立 数矢小学校	施設	東	京
	NTT滝不動	施設	千 葉		財)微生物応用技術研究所	施設	静	畄
	東京電力 横須賀	施設	神奈川	H14. 8月	カネカ	縞鋼板床	兵	庫
H12. 2月	デンソー豊橋	施設	愛知	H14. 10月	三菱レーヨン 大竹工場	製造設備	広	島
	東京電力 横浜火力	施 設	神奈川		水面水産研究センター	施設	千	葉
H12. 3月	鹿児島放送局	放送鉄塔	鹿児島		カネカ	縞鋼板床	兵	庫
H12. 5月	修善寺簡易保険	施 設	静岡		全日空 成田調理センター	施設	茨	城
	平谷村ひまわりの湯	施 設	静岡	H14. 11月	YKK京葉建材	施設	千	葉
	東京電力 広野火力	施 設	福島	H14. 12月	東京電力 広野火力	施設	福	島
H12. 7月	東京電力 横浜火力	施 設	神奈川	H14.12月	川越滝ノ下終末処理場	施設	埼	玉
H12. 8月	JR八王子	施 設	東京	H15. 5月	JR南浦和電車区	施設	埼	玉
	青梅市立第6中学校	施 設	東京	H15. 6月	トクヤマ	電解設備	Ш	
	東京都北区役所	施 設	東京	H15. 7月	富士通 長野	施設	長	野
H13. 1月	核燃料サイクル機構	施 設	茨 城		東京電力 広野火力	施設	福	島
	東京電力 広野火力発電所	施設	福島	H15. 10月	東京電力 浦安	施設	千	葉
H13. 2月	横須賀市立公園	施設	神奈川		伊藤ハム東京工場	施設	東	京
	国際センタービル	地下タンク	愛知	H15. 11月	万座プリンスホテル	施設	群	馬
H13. 3月	シャープ天理	施設	奈 良	H15. 12月	キャノン綾瀬	施設	埼	玉
H13. 5月	鹿児島放送局	放送鉄塔	鹿児島		熱海リフレッシュセンター	施設	静	畄
H13. 8月	トクヤマ	電解施設	μп	H16. 1月	東京電力 広野火力	施設	福	島
	東京電力 鹿島火力発電所	施設	茨 城		京都大学	受水槽	京	都
H13. 8月	東京電力 横浜火力発電所	施設	神奈川	H16. 3月	高田馬場住宅	施設	東	京
H13. 10月	東京電力 広野火力	施設	福島		塚沢小学校	施設	東	京
	三菱レーヨン 大竹工場	製造設備	広島	H16. 4月	杭瀬団地19号棟	施設	大	阪
H13. 11月	明治製菓	施設	大 阪		三井金属総合研究所	施設	千	葉
		-						

1. CCPの寿命は

発売以来20年になりますが、亜硫酸ガスや塩害などを除き、大規模な塗り替えはありません。 ただし、CCPは錆止めなので、トップコートの塗り替えは必要です。

2. 塩水噴霧、キャス試験は

キャス試験で11日264時間の実績があります。これは高性能ステンレスに匹敵する結果です。

3. 材料販売は

材料販売はありません。協力工事店の責任施工でお見積いたします。

4. 価格は

一般の錆止めよりは高価です。 しかし、3種ケレンで大丈夫なので、トータルコストは安くなります。

◆CCPシリーズ比較表

比較項目	CCP 1 1 7	CCP 1 2 0	CCP 1 0 1
溶剤含有の有無	溶剤系	溶剤系	無溶剤系
膜厚(1回当たりのDRY膜厚)	薄い	厚い	厚い
	30μ前後	100μ前後	150μ前後
対象下地状況	凹凸が小さい	凹凸が大きい	凹凸が大きい
ケレンレベル	3種ケレン	3種ケレン以上	2. 5種ケレン
コスト*	単価高い	単価中間	単価安い
トータルコスト(使用量に対し)*	安い	中間	高い
使用場所	内陸部	工場、海岸部、船	全対象可
[使用物例	水没可	錆瘤あり 水没可	水没は避ける
施工性*	良好	やや悪い	悪い
乾燥性	速い	速い	非常に遅い
防錆力	良好	優秀	良好
密着機構	金属と反応	金属と反応	接着高度化
有効主成分	キレート化	キレート化	エポキシ
コンクリートへ利用	良好	良好	最適

^{*}印は3者での比較